Sunday, April 1, 2012

Dampers: The Ultra Damper Difference

To make a proper choice of damper for your engine we need to analyze the different designs, how they work and the materials they use to do the damping. Once we go through the details it will be easy to see why the Ultra Damper has set the bar in modern engine damping. So let's get started!

There are a number of different types of dampers used. First is the most used type which all the OEM car manufacturers use. This damper is made of two parts, first is the inner section which mounts to the crankshaft and the second outer section (with or without belt grooves or teeth). These two sections are bonded together with rubber creating what looks like a rubber ring. This type of damper is limited in its ability to reduce torsional movement or harmonic frequencies because it has limited motion, uses rubber which causes wild swings in its limited effectiveness due to temperature and lastly the small amount of weight (the outer section). The first problem with the OEM damper is its lack of motion. It moves torsionally, side to side, but is limited in how far it can move due to the thin layer of rubber that bonds its sections together. It has no ability to move with engine thrust and it has no orbital ability. The second problem is the rubber which softens very quickly as the engine heats up. This softening radically changes the dampers ability to control torsional movement and harmonic frequencies. So ultimately this rubber causes the damper to only be useful in a very narrow rpm band. Rubber also degrades very quickly and causes OEM dampers to break apart at the bonding. The thrid problem is weight because with the OEM dampers limited motion it needs significantlyh more weight to function and the OEM's do not include enough weight to help counteract the other two short comings. The only positives of this type of damper are its cheap developemnt and manufacturing cost and its good ability to respond quickly to crankmovement due to the inertia weight being on the outside of the elastomer, this unfotunately is quickly negated by its lack of weight and the variability of the rubber itself.

The next type of damper is the friction damper. The friction damper is usually made with split intertia weights that have a friction bonded to them or to the hosuing they sit in. The inertia weights also have springs between them to force them into contact with the friction material. The intertia weights then ride on a phenolic or other type of dry or wet bearing. The amount of spring determines the amount of damping capability and the tune of the damper, meaning where it works best in the rpm range. The problem with friction dampers is they are complicated and very hard to tune, the have no thrust or orbital capability, since they use friction material to dampen torsionals they start to wear out from the minute they are installed and lastly the inertia weight is held captive by the friction material. Friction dampers have alot of parts from 20-30 bolts, 5-10 springs, two or more intertia weights, friction material, bonding agents, mutliple housing components plus bearings. Friction dampers are a disaster waiting to happen becaus of their complexity and sheer number of components. The moto should be keep it simple stupid (KISS) as the engine is already complex enough. Due to their tight fit inside the damper housing they cannot move forward or backward from thrust motions and nor can they move orbitally. Worst of all is friction dampers wear out. Even if this monster of complexity is assembled properly it will begin to lose effectiveness very quickly as the friction material begines wearing away from the second it is run. The inertia weight can only move when the friction lets it go, for a damper to work best its inertia weight must control the elastomer.

The next type of damper is the fluid/gel type. This fluid/gel is a viscous non-foaming liquid. The liquid is injected into a housing that has a free intertia weight already installed. The fluid allows the inertia weight to move and counteract the torsional motion and the fluid helps absorb harmonic frequencies. Fluid dampers were originally designed for large diesel engines like in trains or boats. The problem with fluid dampers are the fluid itself, its limited inertia weight motion, its inability to handle higher RPM's, its lack of servicability and lastly the inertia weight is held captive by the fluid/gel. The first problem is the fluid itself thickens and binds over time causing the damper to lose all its effectiveness as the inertia weight can no longer move. The second problem again is its lack of inertia weight motion. Due to the close proximity of the inner housing and the inertia weight the fluid damper has no thrust or orbital damping ability. The third problem is the higher the RPM the more likely the fluid/gel will lock up the inertia weight in the housing eliminating its damping ability. This was not a problem for fluid/gel dampers in diesel applications as they rarely went beyond 3000 RPM. Most domestic street V8 engines also rarely saw really high revs above 5500-6000 RPM until the last 10-15 years. Only now with the advent of really high RPM applications are these problems becoming apparent in bearing wear and other areas of crank damper from the fluid damper acting like a weighted hammer when it locks up. Once they fail they are also not serviceable due to their being welded together. Throw it away and now you have to pay full price again. The inertia weight can only move when fluidgel lets it go, for a damper to work best its inertia weight must control the elastomer.

The next type of damper is the o-ring style. The o-ring style damper use o-rings which are mounted into slots cut in the intertia ring. The housings are then slide over the o-rings and inertia ring. The intertia ring id free to move slightly inside the housing due to the friction of the o-rings and the surface of the housing. The problems with o-ring damper are the continued use of rubber as the elastomer material, Its minimal amount of actual damping material (small o-rings), it limited ability to dampen thrust, its inability to move orbitally, a complex inspection /rebuild process requiring tools you need to purchase and lastly the inertia weight is held captive by the elastomer. The use of rubber in the o-ring style damper creates another wear situation as the friction between the o-rings and the housing are what determine the movement capability of the inertia ring. This friction causes the o-ring surfaces to wear out, this wear causes undesired movement of the intertia weight beyond its original design intention. Also the use of o-rings limits the amount of damping material which needs to be significantly increased. Due to the location of the o-rings this type of damper does have a very limited ability to dampen thrust motion but because of the tension from the rings on its outer diameter the motion is not nearly enough. The o-ring design also prohibits orbital motions due to the tightness of the inertia and o-rings to the housing. Due to the frictional nature of its design this unit must be rebuilt but determining when to rebuild it can be a nightmare due to the tools necessary to open the damper for inspection. The inertia weight can only move when the elastomer frcition lets it go, for a damper to work best its inertia weight must control the elastomer.

The last type of damper is the urethane ringed Ultra Damper. This damper is designed with a single inertia weight which has a large urethane ring mounted inside of it. The inertia weight controls the elastomer. The inertia weight and urethan ring then mount inside of two aluminum housing which are then bolted together. The completed hosuing then is bolted to a steel hub to complete the damper by using a moutning material that can be interference fit to the crankshaft. The Ultra Damper eliminates the shortcomings of all the other styles of damper. The part is not complex when compared to the friction damper, it has a hub two housings an intertia ring an elastomer ring and 16 bolts or various sizes. There is no need to tune an Ultra Damper as they work extremely efficiently from idle to whatever max RPM you may be running. The Ultra Damper uses no wear materials in order to damper. Because the elastomer is inside the inertia weight the inertia weight now controls all necessary movement maximizing the damping capabilities. By mounting the intertia weight over the elastomer and allowing area inside the hosuing the inertia weight can fully move in any direction, torsioanlly, laterally (thrust) and orbitally. The Ultra Damper is the first and only 3D damper working in all three fields over motion. By using a large urethane elastomer ring we can maximize the damping material (medium) allowing for never before seen torsioanl and harmonic absorbsion. The Ultra damper elastomer is 10-20 times more than any other damper. The Ultra Damper is also easy to inspect, requiring no special tools to be bought and can be done in just a few short minutes. Although we don't expect any need for servicing the Ultra Damper is completely field serviceable by the consumer and all components are available purchase.

So now you know how all types of dampers work, especially their shortcomings. With this understanding it is easy to see how we at UR saw a great opportunity to advance the capability of the damper. The development of the Ultra Damper ushers in a new era in engine dampability allowing for higher levels of power without the potential dangers the extra power can bring. So when only the best will do think Ultra Damper, the only 3D damper available.

No comments:

Post a Comment